i) Simplify (2 * sqrt(7))^2 ii) Find the value of ((2 * sqrt(7))^2 + 8)/(3 + sqrt(7)) in the form m + n * sqrt(7) where n and m are integers.

i) (2sqrt(7))2 = 2 sqrt(7)2 = 4 * 7 = 28      (1 mark) ii) First of all substitute the answer from above.    ((2 * sqrt(7))2 + 8) / (3 + sqrt(7)) = (28 + 8) / (3 + sqrt(7)) = 36 / (3 + sqrt(7)) Multiply by (3 - sqrt(7))/(3 - sqrt(7)) = 1.    36 / (3 + sqrt(7)) = 36 / (3 + sqrt(7)) * (3 - sqrt(7)) / (3 - sqrt(7)) = (36 * (3 - sqrt(7))) / ((3 + sqrt(7)) * (3-sqrt(7)) = (108 - 36 * sqrt(7)) / (9 + 3 * sqrt(7) - 3 * sqrt(7) - 7) = (108 - 36 * sqrt(7)) / 2 = 54 - 18 * sqrt(7).      (3 marks) (Hence m=54 and n=-18) 

AB
Answered by Andrew B. Maths tutor

7589 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the Quotient rule, Find dy/dx given that y = sec(x)


1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142


If z1 = 3+2i, z2= 4-i, z3=1+i, find and simplify the following: a) z1 + z2, b) z2 x z3, c)z2* (complex conugate of z2), d) z2/z3.


Differentiate y=(sin(x))^(2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning