Solve the simultaneous equations: y = x - 2 and y^2 + x^2 = 10

y = x - 2

y+ x2 = 10

  1. Subsitutute the top equation into the second equation:

     (x-2)2 + x2 = 10

  1. Expand out the brackets and simplify:

     x- 4x + 4 + x= 10

     2x- 4x - 6 = 0

     x2 - 2x - 3 = 0

  1. Factorise the quadratic equation to find the two values of x:

    (x - 3) (x + 1) = 0

    x = 3, x = -1

         

IR
Answered by Iman R. Maths tutor

15627 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation: (x-y)^2 = 6x +5y -4. Use Implicit differentiation to find dy/dx in terms of x and y. The point B with coordinates (4, 2) lies on C. The normal to C at B meets the x-axis at point A. Find the x-coordinate of A.


How do you take the derivative of a^x ?


Find the area enclosed between C, the curve y=6x-x^2, L, the line y=16-2x and the y axis.


Integrate the function : F'(x)=3x^2+4x-5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning