Solve the simultaneous equations: y = x - 2 and y^2 + x^2 = 10

y = x - 2

y+ x2 = 10

  1. Subsitutute the top equation into the second equation:

     (x-2)2 + x2 = 10

  1. Expand out the brackets and simplify:

     x- 4x + 4 + x= 10

     2x- 4x - 6 = 0

     x2 - 2x - 3 = 0

  1. Factorise the quadratic equation to find the two values of x:

    (x - 3) (x + 1) = 0

    x = 3, x = -1

         

IR
Answered by Iman R. Maths tutor

16272 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The velocity of a moving body is given by an equation v = 30 - 6t, where v - velocity in m/s, t - time in s. A) What is the acceleration a in m/s^2? B) Find the expression for the displacement s in terms of t given the initial displacement s(0)=10 m.


Solve for x (where 0<x<360) 2sin^2(x) - sin(x) - 1 = 0


prove that lnx differentiated is 1/x


Given that x=3 is a solution to f(x)= 2x^3 - 8x^2 + 7x - 3 = 0, solve f(x)=0 completely.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning