Solve the pair of simultaneous equations; (1) y + 4x + 1 = 0, (2) y^2 + 5x^2 + 2x = 0 .

Rearrage equation (1) to make y the subject of the formula. This gives y = -4x -1 .

Substitute this value of y into equation (2). This gives (-4x -1)^2 +5x^2 +2x = 0 . 

Expanding out the brackets gives 16x^2 + 8x + 1 + 5x^2 +2x =0 .

Collecting all the like terms gives 21x^2 +10x + 1 = 0 .

Factorising this equation gives (7x + 1)(3x + 1) = 0 which means x = -1/7, -1/3 . 

Substituting these x values back into (1) implies that y = - 3/7, 1/3 .

MG
Answered by Melanie G. Maths tutor

6652 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the general solution of the equation tan(2x + pi/2) = SQRT(3), giving your answer for x in terms of π in a simplified form.


How do you differentiate 2^x?


Express 3sin(2x) + 5cos(2x) in the form Rsin(2x+a), R>0 0<a<pi/2


How to differentiate y=2x(x-2)^5 to find dy/dx?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences