Find the first derivative of r=sin(theta+sqrt[theta+1]) with respect to theta.

To find the first derivative we must apply the chain rule. Our aim is to find dr/d(theta). We start by bringing the differential of what's inside the sine brackets outside and multiplying it by the differential of sine but keeping the same theta+sqrt(theta+1) for the whole sine differential. The differential we're bringing out is dr/d(theta) of theta+sqrt(theta+1) which is 1+1/2*(theta+1)-1/2 and the sine differentiates to cosine which becomes cos(theta+sqrt[theta+1]). Multiplying these both together gives us the answer by means of the chain rule of dr/d(theta)=(1+1/2*(theta+1)-1/2)cos(theta+sqrt[theta+1]). Simplifying it gives us the final answer of dr/d(theta)=(1+1/(2sqrt(theta+1)))*cos(theta+sqrt[theta+1]).

TD
Answered by Tutor61926 D. Maths tutor

4715 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I've been told that I can't, in general, differentiate functions involving absolute values (e.g. f(x) = |x|). Why is that?


Why do we have to add the +c when integrating a function


How to differentiate with respect to x, xsin2x.


f(x)=x^3 + x^2 -10x +8 show that (x-1) is a factor of f(x), Factorise f(x) fully , sketch the graph of f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning