Find the first derivative of r=sin(theta+sqrt[theta+1]) with respect to theta.

To find the first derivative we must apply the chain rule. Our aim is to find dr/d(theta). We start by bringing the differential of what's inside the sine brackets outside and multiplying it by the differential of sine but keeping the same theta+sqrt(theta+1) for the whole sine differential. The differential we're bringing out is dr/d(theta) of theta+sqrt(theta+1) which is 1+1/2*(theta+1)-1/2 and the sine differentiates to cosine which becomes cos(theta+sqrt[theta+1]). Multiplying these both together gives us the answer by means of the chain rule of dr/d(theta)=(1+1/2*(theta+1)-1/2)cos(theta+sqrt[theta+1]). Simplifying it gives us the final answer of dr/d(theta)=(1+1/(2sqrt(theta+1)))*cos(theta+sqrt[theta+1]).

TD
Answered by Tutor61926 D. Maths tutor

4253 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 5x^2 + 11x + 5 with respect to x


If x=-2,1,2 and the y intercept is y=-8 for y=ax^3+bx^2+cx+d, what is a, b, c and d


Given that y = x^4 tan(2x), find dy/dx


Question shown in the answer section as a hyperlinked link.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences