The height (h) of water flowing out of a tank decreases at a rate proportional to the square root of the height of water still in the tank. If h=9 at t=0 and h=4 at t=5, what is the water’s height at t=15? What is the physical interpretation of this?

Note: time, t, is measured in minutes, and height, h, is measured in metres.

Let k>0, a constant. 

The differential equation to be solved is given by: dh/dt = - k(h)^0.5.

Using 'separation of variables' gives the solution: 2(h)^0.5 = - kt + c (where c is an arbitary constant)

Using the given conditions, you can solve to find that: c =6, k = 0.4

Substituing for t=15 gives the final solution: at t=15, h=0 which implies that the tank is completely drained

SN
Answered by Sandie N. Maths tutor

5108 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integral of Cosec(x)/Sec(x) (i.e. Use of trignometric identities)


How do you find the area between two lines?


y=e^2x-11e^x+24 Find the stationary point, nature of the stationary point, the x-intercepts and the y-intercept (calculator allowed)


Find the centre and radius of the circle with the equation x^2 + y^2 - 8x - 6y - 20 = 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning