The height (h) of water flowing out of a tank decreases at a rate proportional to the square root of the height of water still in the tank. If h=9 at t=0 and h=4 at t=5, what is the water’s height at t=15? What is the physical interpretation of this?

Note: time, t, is measured in minutes, and height, h, is measured in metres.

Let k>0, a constant. 

The differential equation to be solved is given by: dh/dt = - k(h)^0.5.

Using 'separation of variables' gives the solution: 2(h)^0.5 = - kt + c (where c is an arbitary constant)

Using the given conditions, you can solve to find that: c =6, k = 0.4

Substituing for t=15 gives the final solution: at t=15, h=0 which implies that the tank is completely drained

SN
Answered by Sandie N. Maths tutor

5354 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A small stone is projected vertically upwards from a point O with a speed of 19.6m/s. Modelling the stone as a particle moving freely under gravity, find the length of time for which the stone is more than 14.7 m above O


Find the indefinite integral of x^8*ln(3x) using integration by parts


What is the derivative?


How do you form a Cartesian equation from two parametric equations?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning