Find the x-values of the turning points on the graph, y=(3-x)(x^2-2)

The minimum point occurs where dy/dx=0

We have 2 options: 1.) Expanding the brackets 2.) The product rule of differentiation

The shortest is the product rule: dy/dx= (d/dx)(3-x).(x2-2) + (3-x).(d/dx)(x2-2)

dy/dx=(-1).(x2-2) + (3-x).(2x)

dy/dx= -x2+2 +6x-2x2

dy/dx=-3x2+6x+2

-3x2+6x+2=0 gives x=1-root(5/3), and, x=1+root(5/3)

ZE
Answered by Zita E. Maths tutor

2868 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the gradient of the function y=x^2+6x when y=-9


How do I differentiate y = ln(sin(3x))?


Express (3 - sqrt(5))^2 in the form m + n*sqrt(5), where m and n are integers.


If f(x)=(4x^2)-(8x)+3, find the gradient of y=f(x) at the point (0.5,0)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences