If y=3x^3e^x; find dy/dx?

Using the product rule we know that dy/dx = uv' + vu' where u = 3x^3; v = e^x. e^x differentiates to itself multiplied by any number in front of the x. u' = 9x^2; v' = e^x. Therefore dy/dx = 3x^3e^x + 9x^2e^x. This could be simplified further if the question asks for the answer in its simplest form. 

AG
Answered by Aimee G. Maths tutor

5329 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

F ind all values of x in the range 0° <= x <= 180° satisfying tan(x+45°)= 8tan(x)


Differentiate y = x(x+3)^4


find the derivative of the following equation: a) y = 5x^3 - 4x^-4 + xb


Rationalise the denominator of 25/sqrt(5)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning