If y=3x^3e^x; find dy/dx?

Using the product rule we know that dy/dx = uv' + vu' where u = 3x^3; v = e^x. e^x differentiates to itself multiplied by any number in front of the x. u' = 9x^2; v' = e^x. Therefore dy/dx = 3x^3e^x + 9x^2e^x. This could be simplified further if the question asks for the answer in its simplest form. 

AG
Answered by Aimee G. Maths tutor

5014 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the complex equation z^3 + 32 + 32i(sqrt(3)) = 0


solve for x, in the form x = loga/logb for 2^(4x - 1) = 3^(5-2x) (taken from OCR June 2014 C2)


Integrate a^x with respect to x


Differentiate y=(4x^2-1)^3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences