If y=3x^3e^x; find dy/dx?

Using the product rule we know that dy/dx = uv' + vu' where u = 3x^3; v = e^x. e^x differentiates to itself multiplied by any number in front of the x. u' = 9x^2; v' = e^x. Therefore dy/dx = 3x^3e^x + 9x^2e^x. This could be simplified further if the question asks for the answer in its simplest form. 

AG
Answered by Aimee G. Maths tutor

5641 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = (3x^2 + 1)^2


When Integrating by parts, how do you know which part to make "u" and "dv/dx"?


Find the area enclosed by the curve y = 3x - x^2 and the x-axis


Using partial fractions, find f(x) if f'(x)=5/(2x-1)(x-3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning