If y=3x^3e^x; find dy/dx?

Using the product rule we know that dy/dx = uv' + vu' where u = 3x^3; v = e^x. e^x differentiates to itself multiplied by any number in front of the x. u' = 9x^2; v' = e^x. Therefore dy/dx = 3x^3e^x + 9x^2e^x. This could be simplified further if the question asks for the answer in its simplest form. 

AG
Answered by Aimee G. Maths tutor

5558 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

the line L goes through the points A (3,1) and B(4,-2). Find the equation for L.


Find the coordinates of the turning points of the curve y = 4/3 x^3 + 3x^2-4x+1


Solve the inequality 4x^2​>5x-1


Find dy/dx from the equation 2xy + 3x^2 = 4y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning