If y=3x^3e^x; find dy/dx?

Using the product rule we know that dy/dx = uv' + vu' where u = 3x^3; v = e^x. e^x differentiates to itself multiplied by any number in front of the x. u' = 9x^2; v' = e^x. Therefore dy/dx = 3x^3e^x + 9x^2e^x. This could be simplified further if the question asks for the answer in its simplest form. 

AG
Answered by Aimee G. Maths tutor

5084 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A 2.4 m long plank of mass 20kg has 2 pins, each 0.5 meters from each respective plank end. A person of mass 40kg stands on the plank 0.1m from one of the pins. Calculate the magnitude of reactions at the pins for this structure to be in equilibrium.


Differentiate xcos(x) with respect to x.


A curve has equation x^2 +2xy–3y^2 +16=0. Find the coordinates of the points on the curve where dy/dx = 0.


How to find the reciprocal of a graph, such as y=cos(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences