How do we work out the asymptotes of the graph y=1/x -5

In most core 1 papers this kind of question is usually asked. First of all an asymptote is a line that is close to an axis but never touches it. Now look at the graph as a normal reciprocal graph of y=1/x the only difference now is that it has -5 added to the end. Draw the graph y=1/x and move it down the y-axis 5 spaces. This will be your y=1/x -5. You can then work out the x-intercept which would be 2/5. What you will see is two asymptotes along the y and x axis. The asymptote along the y-axis must be x=0 as that asymptote hadn't changed from the previous y=1/x graph. However, the asymptote along the x-axis has changed, since we moved the graph down 5 spaces along the y-axis, the asymptote must be y=-5. 

AB
Answered by Aniqah B. Maths tutor

7837 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how find dy/dx of parametric equations.


Integrate the function x(2x+5)^0.5


Find the shortest distance between the line L: x=1+t, y=1+2t, z=1-t and the point A: (2,3,4)


If y = (4x^2)ln(x) then find the second derivative of the function with respect to x when x = e^2 (taken from a C3 past paper)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences