How do I find the angle between a vector and a plane in cartesian form?

First of all, you should find the angle between the vector and the normal of the plane using the rule cosX=a.b/modamodb. The normal can be found easily from the cartesian equation of the plane. For example, the cartesian plane 2x+5y-3z=6 has normal (2  5  -3). 

The angle that you find using this method is the angle between the vector and the normal. Since we wish to find the angle between the vector and the plane, we must therefore subtract our result from 90 degrees to find the correct one.

ES
Answered by Esme S. Maths tutor

3814 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

two balls of similar size masses m and 2m are moving at speeds u and 2u along a frictionless plane, they collide head on and are reflected, assuming that the coefficient of restitution of this collision is 1, what the speeds are afterwards in u


The finite region S is bounded by the y-axis, the x-axis, the line with equation x = ln4 and the curve with equation y = ex + 2e–x , (x is greater than/equal to 0). The region S is rotated through 2pi radians about the x-axis. Use integration to find the


find dy/dx where y = a^x


f(x) = e^(sin2x) , 0 ≤ x ≤ pi (a). Use calculus to find the coordinates of the turning points on the graph of y = f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning