How do I find the angle between a vector and a plane in cartesian form?

First of all, you should find the angle between the vector and the normal of the plane using the rule cosX=a.b/modamodb. The normal can be found easily from the cartesian equation of the plane. For example, the cartesian plane 2x+5y-3z=6 has normal (2  5  -3). 

The angle that you find using this method is the angle between the vector and the normal. Since we wish to find the angle between the vector and the plane, we must therefore subtract our result from 90 degrees to find the correct one.

ES
Answered by Esme S. Maths tutor

3815 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How was the quadratic formula obtained.


Use implicit differentiation to find dy/dx of the equation 3y^2 + 2^x + 9xy = sin(y).


Find values of x for which 2x^2 < 5x + 12


(1.) f(x)=x^3+3x^2-2x+15. (a.) find the differential of f(x) (b.) hence find the gradient of f(x) when x=6 (c.) is f(x) increasing or decreasing at this point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning