The curve C has equation 2x^2y+2x+4y-cos(pi*y)=17 A) Use implict differenciation to find dy/dx B) point P(3,0.5) lies on C, find the x coodinate of the point A at which the normal to C at P meets the x axis.

A) dy/dx = (-4xy-2) / (2x2+4+pisin(piy) B) (62+3*pi) / (22+pi)

AH
Answered by Alisha H. Maths tutor

4588 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = Sin(2x)Cos(x). Find dy/dx.


The curve C has equation 2yx^2 + 2x + 4y - cos(πy) = 45. Using implicit differentiation, find dy/dx in terms of x and y


The Curve C shows parametric equations x = 4tant and y = 5((3)^1/2)(sin2t) , Point P is located at (4(3)^1/2, 15/2) Find dy/dx at P.


What is the value of the integral of e^x from x = 1 to x = 2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences