How do you find the nth term formula for a sequence with non-constant difference?

Take the sequence;

9,    12,    19,    30,    ...

(1) The first step is always to look at difference between the terms;


9,    12,    19,    30,    ...
   +3,    +7,    +11,   ...                 
        +4,    +4,    ...                      

We can see the difference is not constant, (2)  so we looked at the change in the difference each term.

This gives a constant change in the difference of an extra +4 each term. The fact that we needed to take 2 turns to find the constant difference means we are dealing with a quadratic sequence.

(3) Furthermore, because the difference is +4, we are dealing with a 2n2 sequence.

If the change in the difference is (a) then the nth term follows a (1/2a)n2 pattern.

(4) Now we can rewrite the sequence as follows;

         n       n2      2n2
9       1       1         2

12     2       4         8             

19     3       9        18

30     4      16       32

 (5) We need to find the difference between the sequence and 2n2.

           2n2        d

9          2          -7                

12        8          -4                   

19       18         -1

30       32        +2

(6) The difference here will either be a constant number, in which case the nth term is (1/2a)n2 +d. Or like this case, will itself follow a linear sequence with constant difference, which we should know how to solve.

 1      2      3       4
-7,    -4,    -1,    +2
    +3     +3    +3

This gives 3n - 10. Therefore the whole formula for the nth term is;

(7) 2n2 + 3n - 10

RS
Answered by Richard S. Maths tutor

201202 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of line A is y = 6x -4. The equation of line B is 2y - 12x + 14 = 0. Are these two lines parallel?


Simplify the expression: (2a + a)x(5a - a)


Johnny take 4 hours 50 minutes to drive 213 miles to Manchester. He then takes the train to Liverpool. Liverpool is 37 miles from Manchester and the train travels at 90mph. Calculate Johnny's average speed for his total journey in mph.


Work Out (2+11/15 )-(1+1/3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences