How do I do integration by parts?

Say we have an equation with the product of two subjects in the form f(x) = u(x)v(x).

Differentiating is simple, we would just multiply the differential* of u(x) by v(x) and add the differential of v(x) times by u(x). i.e f'(x) = u'(x)v(x)+v'(x)u(x).

Now, integrating is slight trickier. It can involve more than one step. We again have an equation of the product of two subjects. But this time, we write it as f(x) = u(x)v'(x). To find the integral we first need to differentiate u(x) and integrate v'(x). This will give us the following relevant terms (v'(x) is now not needed):

u(x)

u'(x)

v(x)

The integral is:

∫ f(x) dx = u(x)v(x) - ∫ v(x)u'(x) dx.

The last term which I have bolded and underlined is the term you need to reduce to a single subject of x e.g. x or x2 not xcos(x) to make it easily integratable. To do this, you need to choose which part is your u(x) and which your v'(x) These may take two of three times of repeating the same integration by parts but you should nomrally get there.

*Note: I am denoting differentials as f'(x), known as prime.

DA
Answered by Doug A. Maths tutor

4890 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the function f (x) = (2/3) x^3 + bx^2 + 2x + 3, where b is some undetermined coefficient: (a) find f'(x) and f''(x) and (b) if you know that f(x) has a stationary point at x = 2, use this information to find b.


Find the derivative of f where f(x)=a^x.


Differentiate sin3x-3x= f(x)


How do you find the equation of a tangent to a curve at a certain point, from the equation of the curve?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning