How can I solve quadratic equations by completing the square?

When we have a quadratic (ax2 + bx + c = 0) we can "complete the square" to solve for x. For example x2 + 8x + 7 = 0. First look at the x2 + 8x, in particular the coefficient of x, "b", which in this case is 8. Halve this number and put into a bracket with x, which will be squared (x + 4)2 . If we were to expand this we would get x2 + 8x good so far + 16 not what we need. To equate our expressions then, we need to subtract 16 from (x + 4)2. Rewriting our original equation with x2 + 8x substituted by (x + 4)2 -16, gives us (x + 4)2 -16 + 7 = 0, which rearranges to give (x + 4)2 - 9 = 0. Some basic algebra lets us now solve this: (x + 4)2 = 9; (x + 4) = 3 or -3; x = -1 and -7. When dealing with quadratics where "a" is not 1, we must first divide by "a" to get the term x2. Completing the square is a very useful tool to solve quadratics when it is not doable by sight, as well as for finding minimum values.

TB
Answered by Thomas B. Maths tutor

3719 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

I set up a tent (assume it’s a regular triangular prism) of length 2.2m. The triangular face of the tent is an isosceles triangle. The two identical sides are both 1.4m long and have an angle of 34degrees between them. Work out the volume of the tent -3sf


Expand and simplify 3(x+4) - 2(4x+1)


A teacher is chosen at random. The probability that the teacher is female is 3/5. There are 36 male teachers. How many teachers in total work at the school?


Convert 0.2m^2 to mm^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning