Prove that the lines 2y=3-x and y-2x=7 are pependicular.

We can find out whether lines are perpendicular by comparing their gradients. Each gradient should be the negative reciprocal of the other - for example, 3/2 and -2/3, or 4 and -1/4. (Writing the number as a fraction, then flipping the top and bottom of the fraction and reversing the +/- sign should give you the negative reciprocal.)

To work out the gradient of a straight line, we must rearrange the equation into the form y=mx+c, where m is the gradient and c represents a constant which is the y-intercept (the point at which the line crosses the y-axis).

Rearranging the first equation:

2y = 3 - x  -->   2y = -x + 3  -->  y= -1/2x + 3/2      The gradient, m, is -1/2

Rearranging the second:

y - 2x = 7  -->  y = 2x + 7     The gradient, m, is 2

Since 2 and -1/2 are negative reciprocals, the two lines must be perpendicular.

PM
Answered by Pranavi M. Maths tutor

3446 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I know when to use Sine, Cosine and Tangent


The new reading for James' electricity bill is 7580, and the old reading is 7510, the price per unit is 13p, how much does James have to pay for his electricity?


Differentiate the following: 2x^2 + 3x -2


What is the difference between LCM and HCF?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning