Why do we get cos(x) when we differentiate sin(x)?

If we have an equation for a line, it follows a certain shape when put it on Cartesian axes. If we wish to find the value of the gradient of the graph at a certain coordinate, we can use differentiation to give us a numerical value. The easiest visualisation of differentiation is to look at the graphs y=sin(x) and y=cos(x). When we differentate sin, we get cos; as each cos point corresponds to the value of the gradient at each sin point. Where the gradient of sin is 0 (where the tangent to the curve is a horizontal line), for the same x value, the y value of a cos curve is also 0.

SH
Answered by Sophie H. Maths tutor

5786 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation x^2 – 3xy – 4y^2 + 64 = 0; find dy/dx in terms of x and y, and thus find the coordinates of the points on C where dy/dx = 0


I can differentiate exponentials (e^x), but how can I differentiate ln(x)?


The graph above shows the line y = 3*x^2. Find the area beneath the graph from y = 0 to y = 5.


How to integrate by parts


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning