Why do we get cos(x) when we differentiate sin(x)?

If we have an equation for a line, it follows a certain shape when put it on Cartesian axes. If we wish to find the value of the gradient of the graph at a certain coordinate, we can use differentiation to give us a numerical value. The easiest visualisation of differentiation is to look at the graphs y=sin(x) and y=cos(x). When we differentate sin, we get cos; as each cos point corresponds to the value of the gradient at each sin point. Where the gradient of sin is 0 (where the tangent to the curve is a horizontal line), for the same x value, the y value of a cos curve is also 0.

SH
Answered by Sophie H. Maths tutor

5581 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the function f(x) = sin(x)/(x^2 +1) , giving your answer in the form of a single fraction. Is x=0 a stationary point of this curve?


The function f (x) is defined by f (x) = (1-x)/(1+x), x not equal to -1. Show that f(f (x)) = x. Hence write down f ^-1 (x).


A curve has parametric equations x=2t, y=t^2. Find the Cartesian equation of the curve.


The curve C has equation 2yx^2 + 2x + 4y - cos(πy) = 45. Using implicit differentiation, find dy/dx in terms of x and y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning