What is the integral of sin(3x) cos(5x)?

Using trig formulas we have sin(5x+3x)= sin(5x)cos(3x)+cos(5x)sin(3x) and sin(5x-3x)= sin(5x)cos(3x) - cos(5x)sin(3x). Hence, sin(5x+3x) - sin(5x-3x) = sin(8x)-sin(2x) = 2cos(5x)sin(3x). This implies that cos(5x)sin(3x)=(sin(8x)-sin(2x))/2 which we can easily integrated using the reverse chain-rule to get:

(-cos(8x)/8 + cos(2x)/2)/2 + C, simplifying further we get (4cos(2x) - cos(8x))/2 + C.

MN
Answered by Morenikeji N. Maths tutor

5871 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = (( 4x + 1 )^3)sin(2x), find dy/dx.


SOLVE THE FOLLOWING SIMULTANEOUS EQUATIONS: 5x^2 + 3x - 3y = 4, -4x - 6y + 5x^2 = -7


The curve C has equation y = 3x^4 – 8x^3 – 3. Find dy/dx.


What's the gradient of the curve y=x^3+2x^2 at the point where x=2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning