What is the integral of sin(3x) cos(5x)?

Using trig formulas we have sin(5x+3x)= sin(5x)cos(3x)+cos(5x)sin(3x) and sin(5x-3x)= sin(5x)cos(3x) - cos(5x)sin(3x). Hence, sin(5x+3x) - sin(5x-3x) = sin(8x)-sin(2x) = 2cos(5x)sin(3x). This implies that cos(5x)sin(3x)=(sin(8x)-sin(2x))/2 which we can easily integrated using the reverse chain-rule to get:

(-cos(8x)/8 + cos(2x)/2)/2 + C, simplifying further we get (4cos(2x) - cos(8x))/2 + C.

MN
Answered by Morenikeji N. Maths tutor

5953 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.


What is the product rule in differentiation?


Factorise x^3+3x^2-x-3


What is the smallest possible value of the integral ∫(x-a)^2 dx between 0 and 1 as a varies?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning