Solve these simultaneous equations: 2x+y-5=0 and x^2-y^2=3

To solve this problem, you need to: rearrange the first equation (1) to express y in terms of x to obtain equation (3). Then, substitute this new equation into the quadratic one (the second equation from the problem (2)). Using the formula, expand the brackets (be careful with the negative sign!) and obtain the following quadratic equation: 3x2-20x+28=0. Find the discriminant (D=64), and using the formula find values for x1 and x2. After, using (3), find values for y1 and y2. x1=14/3, y1= - 13/3 and x2=2 and y2=1

full, step-by-step solution will be demonstrated during the lesson

NB
Answered by Nana B. Maths tutor

4811 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the inequality x^2 – 5x – 14 > 0.


Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.


How to integrate ln(x)


What is the product rule in differentiation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences