Differentiate y = (sin(x))^2 (find dy/dx)

This a relatively simple question which requires the use of the chain rule to solve. First we set u = sin(x)  so we then have y = u. Next we perform do differentiations, one on u as a function of x and the other on y as a function of u: dy/du = 2u du/dx = cos(x) Next we note that dy/dx = (dy/du)(du/dx) note how the du terms cancel out, striclty speaking it doesn't quite work this way but for this level it's fine to think of it as such. So dy/dx = 2ucos(x). We finally substitue sin(x) in for u and we have dy/dx = 2*sin(x)*cos(x).

TC
Answered by Tabraiz C. Maths tutor

13448 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate e^x sin x dx


Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.


If y = 2/3 x^3 + x^2; a) What is dy/dx? b) Where are the turning points? c) What are the nature of the turning points?


If (x+1) is a factor of 2x^3+21x^2+54x+35, fully factorise 2x^3+21x^2+54x+35


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences