Differentiate y = (sin(x))^2 (find dy/dx)

This a relatively simple question which requires the use of the chain rule to solve. First we set u = sin(x)  so we then have y = u. Next we perform do differentiations, one on u as a function of x and the other on y as a function of u: dy/du = 2u du/dx = cos(x) Next we note that dy/dx = (dy/du)(du/dx) note how the du terms cancel out, striclty speaking it doesn't quite work this way but for this level it's fine to think of it as such. So dy/dx = 2ucos(x). We finally substitue sin(x) in for u and we have dy/dx = 2*sin(x)*cos(x).

TC
Answered by Tabraiz C. Maths tutor

13909 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y=3 + x^2 -2x^3. Find the two stationary points of this curve.


How do you differentiate y=ln(x)


Find the area beneath the curve with equation f(x) = 3x^2 - 2x + 2 when a = 0 and b = 2


The curve C has equation y = x^3 - 2x^2 - x + 9, x > 0. The point P has coordinates (2, 7). Show that P lies on C.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences