Differentiate y = (sin(x))^2 (find dy/dx)

This a relatively simple question which requires the use of the chain rule to solve. First we set u = sin(x)  so we then have y = u. Next we perform do differentiations, one on u as a function of x and the other on y as a function of u: dy/du = 2u du/dx = cos(x) Next we note that dy/dx = (dy/du)(du/dx) note how the du terms cancel out, striclty speaking it doesn't quite work this way but for this level it's fine to think of it as such. So dy/dx = 2ucos(x). We finally substitue sin(x) in for u and we have dy/dx = 2*sin(x)*cos(x).

TC
Answered by Tabraiz C. Maths tutor

16693 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integral of sin^x dx


Find the first three terms in the expansion of (4-x)^(-1/2) in ascending powers of x.


Find the area under the curve of y=1/(3x-2)^0.5 between the limits x=1 and x=2 and the line y=0


A particle of mass M is being suspended by two ropes from a horizontal ceiling. Rope A has a tension of 15N at 30 deg and rope B has a tension of xN at 45 deg, find M assuming the particle remains stationary.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning