Solve these simultaneous equations: 2x + 5y = 37 and y = 11 - 2x

Simultaneous equation questions look very intimidating because not only are there 2 equations to solve but there is 2 variables in each! To start with, we're going to make the equations look less confusing by re-writing the second equation to be in the same format as the first (will explain how to rearrange equations in video) to give answer 2x + 5y = 37 and 2x + y = 11. We are now going to eliminate a variable so we can begin to solve the equations. If we subtract the second equation from the first, we are left a one variable equation, 4y = 26. Dividing 26 by 4 gives us 6.5 as the value for y. We now subsitute this value into the first equation to find a value for x ---- 2x + (5x6.5) = 37, gives us 2x = 4.5, so x = 2.25. We can now double check by substituting both variables into the second equation in the original form --- 6.5 = 11 - (2x2.25) ---- 6.5 = 11 - 4.5, which is correct. We have now solved the simultaneous equation, the answer should be given in the form y = 6.5, x = 2.25.

BR
Answered by Bethany R. Maths tutor

5680 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve these 2 equations simultaneously: 7x+y=1 and 2x squared - y=3


Calculate the angle x in the following diagram. The area of the square is 16cm squared and the total area is 36.6cm squared.


Solve the following inequality: 6x -3 > 3x + 9


There is a right angled triangle, you know the length of the hypotenuse (6) and one other side (3), can you calculate the third side of the triangle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning