Express √75 in the form of n√3 , where n is an integer. Using this information, solve the following equation: x√48 = √75 + 3√3 (4 marks)

√75 = 5√3, therefore 

x√48 = √75 + 3√3

x√48 = 5√3 + 3√3

x(√16 x √3) = 5√3 + 3√3

4x√3 = 5√3 + 3√3

4x√3 = (5 + 3)√3

4x√3 = 8√3

x√3 = 2√3

x = 2

AT
Answered by Alex T. Maths tutor

8267 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate?


The equation (k+3)x^2 + 6x + k =5 has two distinct real solutions for x. Prove that k^2-2k-24<0


It is given that n satisfies the equation 2*log(n) - log(5*n - 24) = log(4). Show that n^2 - 20*n + 96 = 0.


How can you remember what sin(x) and cos(x) differentiate or integrate to?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning