Given that sin(x)^2 + cos(x)^2 = 1, show that sec(x)^2 - tan(x)^2 = 1 (2 marks). Hence solve for x: tan(x)^2 + cos(x) = 1, x ≠ (2n + 1)π and -2π < x =< 2π(3 marks)

sin(x)2 + cos(x)2 = 1

Dividing by cos(x)2 gives:

tan(x)2 + 1 = sec(x)2 

Which rearranges as:

sec(x)2 - tan(x)2 = 1 as required.

tan(x)2 + cos(x)2 = 1

sec(x)2 - 1 + cos(x)2 = 1

sec(x)2 + cos(x)2 = 2

1 + cos(x)4 = 2cos(x)2

(cos(x)2 -1)2 = 0

cos(x)2 = 1

cos(x) = 1

x = 0, 2π

AR
Answered by Alistair R. Maths tutor

4022 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve for x when |x-1|<|2x+3|


Integrate x*(5e^x)


how do integrate an equation with a surd or a fraction?


Express 21/root7 in the form k root7.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning