y = (x^2)sin(3x). Find dy/dx

We need to differentiate x2sin(3x). We know how to differentiate (x2) on its own, and how to differentiate sin(3x) on its own. So we can use the Product rule:

dy/dx = (d/dx(x2))sin(3x) + x2(d/dx(sin(3x))

          = (2x)sin(3x) + x2(3cos(3x))

          = 2xsin(3x) + 3x2cos(3x)

RD
Answered by Robert D. Maths tutor

18600 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the exact answer to (1^3 + 2^3 + 3^3)^(0.5) ?


Express root(125^x)/5^(2x-1) in terms of 5^a where a is an expression in terms of x.


Discriminants and determining the number of real roots of a quadratic equation


intergrate xcos(2x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning