Use the double angle formulae and the identity cos(A+B)≡cos(A)cos(B)−sin(A)sin(B) to obtain an expression for cos 3x in terms of cos x only

To answer, you need to know and be able to use your trigonometric formulae including the double angle formulae on data sheet.

1: cos(3x)=cos(2x+x) = cos(2x)cos(x) - sin(2x)sin(x)        split the 3x into two terms, 2x and x

2: Using trig identity cos(2A)=2cos^2(x) - 1   and  sin(2A)=2sinAcosA

cos(2x)cos(x) - sin(2x)sin(x) = [2cos^2(x) - 1]cos(x) - [2sin(x)cos(x)]sin(x)

3: expand out

2cos^3(x) - cos(x) - 2[sin^2(x)]cos(x)

4: use trig identity sin^2(x)=1 - cos^2(x)

2cos^3(x) - cos(x) - 2cos(x)[1 - cos^2(x)]

5: simplify

Answer = 4cos^3(x) - 3cos(x)

SH
Answered by Sam H. Maths tutor

15570 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Three forces (4i + 7j)N, (pi +5j)N and (-8i+qj) N act on a particle of mass 5 kg to produce an acceleration of (2i - j) m s 2 . No other forces act on the particle. Find the resultant force acting on the particle in terms of p and q. THEN find p and Q


A Polynomial is defined as X^3-6X^2+11X-6. a)i Use the factor theorem to show that X-3 is a factor. ii Express as a linear and quadratic b)Find the first and second derivative c) Prove there is a maximum at y=0.385 to 3DP


Find the derivative of f(x)=x^2*e^x+x


I don't understand why the function "f(x)=x^2 for all real values of x" has no inverse. Isn't sqrt(x) the inverse?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences