How would you show that a vector is normal to a plane in 3D space?

There are 2 main methods for finding a normal vector.

  1. If you know two vectors that lie in the plane e.g. (a,b,c) and (d,e,f), we can find a normal vector by calculating the vector/cross product of (a,b,c) and (d,e,f). This works because the vector product produces a new vector perpendicular to both your starting vectors, so it must be at right angles to the plane.

  2. If on the other hand you know the Cartesian equation of a plane, which looks like (ax)+(by)+(cz)=0, then the vector (a,b,c) is a normal vector!

FK
Answered by Fionn K. Maths tutor

23188 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you give an example of using the chain rule for differentiation? Example: Let y=(6 + 2x + 2x^2)^3, find dy/dx.


Solve the simultaneous equations x – 2y = 1 and x^2 + y^2 = 29.


differentiate y=e^2x


Integrate (2x)(e^x)dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences