How would you show that a vector is normal to a plane in 3D space?

There are 2 main methods for finding a normal vector.

  1. If you know two vectors that lie in the plane e.g. (a,b,c) and (d,e,f), we can find a normal vector by calculating the vector/cross product of (a,b,c) and (d,e,f). This works because the vector product produces a new vector perpendicular to both your starting vectors, so it must be at right angles to the plane.

  2. If on the other hand you know the Cartesian equation of a plane, which looks like (ax)+(by)+(cz)=0, then the vector (a,b,c) is a normal vector!

FK
Answered by Fionn K. Maths tutor

24112 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the stationary points on the curve y = f(x) = x^3+6x^2-36x?


What is integration?


Use logarithms to solve 9^x=15


A curve C has the equation x^3 + 2xy- x - y^3 -20 = 0. Find dy/dx in terms of x and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences