A curve C has equation y = (2 - x)(1 + x) + 3 . A line passes through the point (2, 3) and the point on C with x-coordinate 2 + h . Find the gradient of the line, giving your answer in its simplest form.

First we find the y coordinate which is a function of x:

x = 2+ h so  y = (2 - 2 - h)(1 + 2 + h) + 3 = -h2 - 3h + 3

Now for the gradient, the line passes through points (2,3) and (2 + h, -h2 - 3h + 3)

dx = 2 - 2 - h = -h                    dy = 3 + h2 + 3h - 3 = h2 +3h 

The gradient dy/dx = -(h + 3)

RS
Answered by Ricardo S. Maths tutor

4287 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The probability distribution of the random variable X is given by the formula P(X = x) = 0.09+0.01x^2 for x= 1,2,3,4,5 ). Find E(X).


Have you taught before?


differentiate the following to find the equation for the gradient of the curve in terms of x and y: 3x^3 + 4x^2 + 5xy + 7y = 0


Sketch the graph of y=3sin(2x +pi/2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning