A curve C has equation y = (2 - x)(1 + x) + 3 . A line passes through the point (2, 3) and the point on C with x-coordinate 2 + h . Find the gradient of the line, giving your answer in its simplest form.

First we find the y coordinate which is a function of x:

x = 2+ h so  y = (2 - 2 - h)(1 + 2 + h) + 3 = -h2 - 3h + 3

Now for the gradient, the line passes through points (2,3) and (2 + h, -h2 - 3h + 3)

dx = 2 - 2 - h = -h                    dy = 3 + h2 + 3h - 3 = h2 +3h 

The gradient dy/dx = -(h + 3)

RS
Answered by Ricardo S. Maths tutor

4407 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many lines of method should I write in order to get all of the marks?


What is the point of differentiation?


Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.


The complex conjugate of 2-3i is also a root of z^3+pz^2+qz-13p=0. Find a quadratic factor of z^3+pz^2+qz-13p=0 with real coefficients and thus find the real root of the equation.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning