The number of uniform spherical balls that can be produced from a given mass of lead is inversely proportional to the radius of the ball cubed. If 2744 balls can be made when the radius is 1mm, how many balls can be made when the radius is 1.4mm ?

So first we need to write down the proportionality relationship the question states. If we let n be the number of balls and r be the radius of the balls we can say n (proportional symbol) 1/r3. We can turn this into an equation by replacing the proportion symbol with an "=" and multiplying the rhs by a constant which we will call k. So we have n = k/r3. Putting in the numbers given in this question we can solve for k :

k = 2744*(1mm)3 = 2744mm3

Now we know what k is we can answer the question, we substitute the value for k and r = 1.4mm into the equation and solve :

n = 2744mm3/(1.4mm)3 = 1000. Note how the units cancel out which is a good sign we've done things correctly. 

So with a radious of 1.4mm we can make 1000 balls.

TC
Answered by Tabraiz C. Maths tutor

3268 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 12 counters in a bag. There is an equal number of red counters, yellow counters and blue counters in the bag. There are no other counters in the bag. 3 counters are taken from the bag. Work out the probability of taking 3 red counters.


Show 23/7 as a mixed number.


LOWER TIER a) Multiply the following out: (x+3)(x-4). b) Factorise the following equation into two bracket form: x^2+7x+12


The straight line joining the points (1, -2a),(a, 1) has a gradient of 5, find the value of a


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning