Solve the equation 2ln2x = 1 + ln3. Give your answer correct to 2dp.

LHS: because alnx = lnxa, 2ln2x = ln(2x)2 = ln4x2

Now, because ln and e are inverse functions, we take both sides to the power of e. Therefore:

eln4x^2 = e1 + ln3

4x2 = e1 + ln3

x2 = (e1 + ln3) / 4

x = sq root of [(e1 + ln3) / 4]

entering into the calculator, this gives us +/- 1.43

SS
Answered by Shiv S. Maths tutor

4543 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that the equation y = 3x^4 - 8x^3 - 3 has a turning point at x=2


How do I do binomial expansions for positive integer n?


Express (x + 1)/((x^2)*(2x – 1)) in partial fractions


Consider the unit hyperbola, whose equation is given by x^2 - y^2 = 1. We denote the origin, (0, 0) by O. Choose any point P on the curve, and label its reflection in the x axis P'. Show that the line OP and the tangent line to P' meet at a right angle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning