Solve the equation 2ln2x = 1 + ln3. Give your answer correct to 2dp.

LHS: because alnx = lnxa, 2ln2x = ln(2x)2 = ln4x2

Now, because ln and e are inverse functions, we take both sides to the power of e. Therefore:

eln4x^2 = e1 + ln3

4x2 = e1 + ln3

x2 = (e1 + ln3) / 4

x = sq root of [(e1 + ln3) / 4]

entering into the calculator, this gives us +/- 1.43

SS
Answered by Shiv S. Maths tutor

4429 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

x = 3t - 4, y = 5 - (6/t), t > 0, find "dy/dx" in terms of t


How do you find the x co-ordinates of the stationary points of a curve with the equation y = 10x - 2x^2 - 2x^3


f(x) = (4x + 1)/(x - 2). Find f'(x)


A pot of water is heated to 100C and then placed in a room at a temperature of 18C. After 5 minutes, the pan temperature falls by 20C. Find the temperature after 10minutes.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning