Integrate x*ln(x)

Let u = ln(x) and dv/dx = x

Thus du/dx = 1/x and v = x2/2

Using the formula:

Integral of udv/dx = uv - Integral of v*du/dx

This becomes: Integral of x*ln(x) = (x2ln(x))/2 - Integral of x/2

Completing the integral on the RHS gives the answer to the question: (x2ln(x))/2 - x2/4

AG
Answered by Anindita G. Maths tutor

4446 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substition u = cos(x) to find the indefinite integral of -12sin(x)cos^3(x) dx


I don’t think I’m smart enough for this course, should I drop it?


Find the derivative of the function f:(0,oo)->R, f(x)=x^x.


Integrate (12x^5 - 8x^3 + 3)dx giving the terms of the answer in the simplest terms


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning