Answers>Maths>IB>Article

Given two functions f and g where f(x)=3x-5 and g(x)=x-2. Find: a) the inverse f^-1(x), b) given g^-1(x)=x+2, find (g^-1 o f)(x), c) given also that (f^-1 o g)(x)=(x+3)/3, solve (f^-1 o g)(x)=(g^-1 o f)(x)

a)  For an inverse function- "inputs become outputs" so swap the positions of the input-variable (i.e "x") with the output variable (i.e f(x)) and then rearange. Once rearanged so that f(x) is on the left and any other variables are on the right, the correct notation to use is now f^-1(x) (rather than f(x)) to signify that this is now an inverse. 

x=3f(x)-5

x+5=3f(x)

f^-1(x)=(x+5)/3

b) The key with this question is to understand the notation because the math is quiet simple. 

"(g^-1 o f)(x)" is sort of like a command. It is telling you to take f(x) as your new input (i.e your "x" variable) and put it into g^-1(x) to get a new output (i.e. g^-1 o f)(x)) ... Think of it like a command telling you to do this: 

where we know, f(x)=3x-5 and g^-1(x)=x+2

(g^-1 o f)(x)= f(x) +2

therefore, 

(g^-1 o f)(x)= (3x-5)+2

(g^-1 o f)(x)= 3x-3

c) Just a case of plugging in what you see and following the directions of the question

(f^-1 o g)(x)=(g^-1 o f)(x)

(x+3)/3=3x-3

x+3=9x-9

8x=12

x=3/2 

KK
Answered by Kendra K. Maths tutor

8259 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

A scalene triangle has base of 5cm. The angle opposite to the base is 63°, and a second angle is 72°. Find the area of the traingle


Find the first and second order derivative of the function, F(x)= 3x^3 - 7 + 5x^2, and then identify the maximum or minimum points.


Find the constant term in the binomial expansion of (3x + 2/(x^2))^33


Prove 2^(n+2) + 3^(2n+1) is a multiple of 7 for all positive integers of n by mathematical induction.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences