Answers>Maths>IB>Article

Given two functions f and g where f(x)=3x-5 and g(x)=x-2. Find: a) the inverse f^-1(x), b) given g^-1(x)=x+2, find (g^-1 o f)(x), c) given also that (f^-1 o g)(x)=(x+3)/3, solve (f^-1 o g)(x)=(g^-1 o f)(x)

a)  For an inverse function- "inputs become outputs" so swap the positions of the input-variable (i.e "x") with the output variable (i.e f(x)) and then rearange. Once rearanged so that f(x) is on the left and any other variables are on the right, the correct notation to use is now f^-1(x) (rather than f(x)) to signify that this is now an inverse. 

x=3f(x)-5

x+5=3f(x)

f^-1(x)=(x+5)/3

b) The key with this question is to understand the notation because the math is quiet simple. 

"(g^-1 o f)(x)" is sort of like a command. It is telling you to take f(x) as your new input (i.e your "x" variable) and put it into g^-1(x) to get a new output (i.e. g^-1 o f)(x)) ... Think of it like a command telling you to do this: 

where we know, f(x)=3x-5 and g^-1(x)=x+2

(g^-1 o f)(x)= f(x) +2

therefore, 

(g^-1 o f)(x)= (3x-5)+2

(g^-1 o f)(x)= 3x-3

c) Just a case of plugging in what you see and following the directions of the question

(f^-1 o g)(x)=(g^-1 o f)(x)

(x+3)/3=3x-3

x+3=9x-9

8x=12

x=3/2 

KK
Answered by Kendra K. Maths tutor

8285 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Write down the expansion of (cosx + isinx)^3. Hence, by using De Moivre's theorem, find cos3x in terms of powers of cosx.


IB exam question: Let p(x)=2x^5+x^4–26x^3–13x^2+72x+36, x∈R. For the polynomial equation p (x) = 0 , state (i) the sum of the roots; (ii) the product of the roots.


Let g (x) = 2x sin x . (a) Find g′(x) . (b) Find the gradient of the graph of g at x = π .


Determine the integral: ∫5x^4dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences