Solve the following pair of simultaneous equations: 1. 3x + 2y = 9 2. 6x + 5y = 21

We can solve this pair of simultaneous equations using substitution. To do this, we firstly have to rearrange one equation to get one variable on its own. For example, we can subtract 2y from each side of the first equation, and then divide both sides by 3 to obtain x = 3 - 2y/3. We then substitute x into equation 2 to obtain 6(3 - 2y/3) + 5y = 21. Simplifying and rearranging this, we obtain y = 3. We can then substitute this value of y into the equation x = 3 - 2y/3 to obtain x = 1.

Alternatively, we can use elimination. To do this, we must multiply one equation by a constant so that it has one variable with the same coefficient as the other equation. For example, by multiplying equation 1 by 2, we obtain 6x + 4y = 18. We see that our new equation and equation 2 have the same x coefficient. Thus, we subtract our new equation from equation 2, which gives y = 3. We can then substitute this value of y into one of our original equations and solve to obtain x = 1.

MC
Answered by Mark C. Maths tutor

3840 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

I have £300 I want to split between my daughters Megan, Danni and laura in the ratio 3:4:1 respectively. How much money will Danni get?


f(x) = 3x - 2a || g(x) = 2ax + 1 || fg(x) = 2x + b/2


There are 10 beads in a bag. Four beads are green, six are black. If three beads are taken at random without replacement, what is the probability that they are the same colour?


Solve the two simultaneous equations. 1. x^2 + y^2 = 25, 2. y - 3x = 13


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning