Solve for -pi < x < pi: tanx = 4cotx + 3

tanx = 4cotx + 3  - Multiply through by tan to form a quadratic. tan^2x = 4 + 3tanx - Simplify by allowing y to equal tanx. y^2 = 4 + 3y - Rearange to standard quadratic form. y^2 - 3y -4 = 0 - Factorise. (y - 4)(y + 1) = 0 Therefore y = 4 and y = -1 Substitute y=tanx to solve for x: y = 4 tanx = 4 x = tan-14 x= 1.326 (3d.p.) tanx = -1 x = tan-1 -1 x = -pi/4

ZL
Answered by Zak L. Maths tutor

6127 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=x^3ln2x


f(x)=x^3 + x^2 -10x +8 show that (x-1) is a factor of f(x), Factorise f(x) fully , sketch the graph of f(x)


A curve C with an equation y = sin(x)/e^(2x) , 0<x<pi has a stationary point at P. Find the coordinates ofP?


Integrate x/((1-x^2)^0.5) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning