Solve for -pi < x < pi: tanx = 4cotx + 3

tanx = 4cotx + 3  - Multiply through by tan to form a quadratic. tan^2x = 4 + 3tanx - Simplify by allowing y to equal tanx. y^2 = 4 + 3y - Rearange to standard quadratic form. y^2 - 3y -4 = 0 - Factorise. (y - 4)(y + 1) = 0 Therefore y = 4 and y = -1 Substitute y=tanx to solve for x: y = 4 tanx = 4 x = tan-14 x= 1.326 (3d.p.) tanx = -1 x = tan-1 -1 x = -pi/4

ZL
Answered by Zak L. Maths tutor

6041 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = (x^2 -4x - 2)^2. Point P lies on C and has coordinates (3,N). Find: a) the value of N. b) the equation of the tangent to C at the point P, in the form y=mx+c where m and c are constants to be found. c) determine d^2y/dx^2.


Differentiate the following: 3/2 x^(3/4) + 1/3 x^(-1/4)


Find an equation for the straight line connecting point A (7,4) and point B(2,0)


Differentiate 5x^2 + 11x + 5 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning