How do I integrate by parts?

When we integrate by parts, we begin by setting the first term to equal some variable U, the second term in the integral we set to be dv/dx. Then we differentiate the U to obtain du/dx and integrate dv/dx to obtain V. The next stage is to put in the values into the following formula: I = uv - ∫(v.du/dx) dx. Finally we integrate V . du/dx and then simplify the expression to obtain the solution to the integral. For an indefinite integral we add the constant (+C) and for a definite integral we have to sub in the limits accordingly. For example: ∫ (xlnx) dx        (1)  u=lnx     (2)  dv/dx=x    (3)  du/dx=1/x   (4)  v= ∫(dv/dx) dx = ∫ x dx = 0.5x^2 using the formula I = uv - ∫ (du/dx . v) dx we obtain ∫ (xlnx) dx = 0.5x^2 (lnx) - ∫ (1/x . 0.5x^2) dx = 0.5x^2 (lnx) - 0.5 ∫ x dx = 0.5x^2lnx - 0.25x^2 +C

LM
Answered by Louis M. Maths tutor

3876 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

7^6 x 7^3


How do you split a fraction into partial fractions?


What is differentiation and how is it used?


What is the method used for differentiation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences