The line AB has equation 5x + 3y + 3 = 0 and it intersects the line with equation 3x - 2y + 17 = 0 at the point B. Find the coordinates of B.

Two straight lines can intersect at only one point. To identify the point at which the lines cross, we make a simultaneous equation, and solve x and y from here, by firstly writing one equation on top of the other:

  1. 5x + 3y + 3 = 0

  2. 3x - 2y + 17 = 0

We then need to make the equations so that the number preceding either the x or the y is the same in both equations. The simplest way to do this here is to mutliply the top line by 2 and the bottom line by 3, in order to make both equations have 6y in them.

  1. 10x + 6y + 6 = 0

  2. 9x - 6y + 51 = 0

From here, we can remove the 6y from both lines and add the equations to solve for x as one is negative and one is positive (if they were both the same sign, we would have to remove one from the other to solve for x).

19x = -57 therefore x = -3

Then we need to find the y coordinate so we sub in x to one of the equations:

  1. -15 + 3y + 3 = 0 so 3y = 12 so y = 4

To check this we sub y and x into our other equation:

-9 - 8 + 17 = 0, thus the coordinates are (-3,4).

JM
Answered by Jamie M. Maths tutor

8548 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you divide polynomials? How do you do it with remainder?


Use chain rule and implicit differentiation to find dy/dx for y^3 = 1 + 3*x^2, then show that they are equal


A trolley of negilible mass on horizontal tracks is at rest. A person of mass 50kg is standing on the trolley with a bag of mass 10kg. The person throws the bag off the trolley horizontally with a velocity of 3m/s. Calculate the velocity of the man.


A mass of 3kg rests on a rough plane inclined at 60 degrees to the horizontal. The coefficient of friction is 1/5. Find the force P acting parallel to the plane applied to the mass, in order to just prevent motion down the plane.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning