The line AB has equation 5x + 3y + 3 = 0 and it intersects the line with equation 3x - 2y + 17 = 0 at the point B. Find the coordinates of B.

Two straight lines can intersect at only one point. To identify the point at which the lines cross, we make a simultaneous equation, and solve x and y from here, by firstly writing one equation on top of the other:

  1. 5x + 3y + 3 = 0

  2. 3x - 2y + 17 = 0

We then need to make the equations so that the number preceding either the x or the y is the same in both equations. The simplest way to do this here is to mutliply the top line by 2 and the bottom line by 3, in order to make both equations have 6y in them.

  1. 10x + 6y + 6 = 0

  2. 9x - 6y + 51 = 0

From here, we can remove the 6y from both lines and add the equations to solve for x as one is negative and one is positive (if they were both the same sign, we would have to remove one from the other to solve for x).

19x = -57 therefore x = -3

Then we need to find the y coordinate so we sub in x to one of the equations:

  1. -15 + 3y + 3 = 0 so 3y = 12 so y = 4

To check this we sub y and x into our other equation:

-9 - 8 + 17 = 0, thus the coordinates are (-3,4).

JM
Answered by Jamie M. Maths tutor

8912 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation x^2 +2x(y)^2 + y =4 . Find the expression dy/dx in terms of x and y [6]


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.


Make a the subject of 3(a+4) = ac+5f


Given that x=3 is a solution to f(x)= 2x^3 - 8x^2 + 7x - 3 = 0, solve f(x)=0 completely.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning