The line AB has equation 5x + 3y + 3 = 0 and it intersects the line with equation 3x - 2y + 17 = 0 at the point B. Find the coordinates of B.

Two straight lines can intersect at only one point. To identify the point at which the lines cross, we make a simultaneous equation, and solve x and y from here, by firstly writing one equation on top of the other:

  1. 5x + 3y + 3 = 0

  2. 3x - 2y + 17 = 0

We then need to make the equations so that the number preceding either the x or the y is the same in both equations. The simplest way to do this here is to mutliply the top line by 2 and the bottom line by 3, in order to make both equations have 6y in them.

  1. 10x + 6y + 6 = 0

  2. 9x - 6y + 51 = 0

From here, we can remove the 6y from both lines and add the equations to solve for x as one is negative and one is positive (if they were both the same sign, we would have to remove one from the other to solve for x).

19x = -57 therefore x = -3

Then we need to find the y coordinate so we sub in x to one of the equations:

  1. -15 + 3y + 3 = 0 so 3y = 12 so y = 4

To check this we sub y and x into our other equation:

-9 - 8 + 17 = 0, thus the coordinates are (-3,4).

JM
Answered by Jamie M. Maths tutor

8107 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of 4x^2 - 10x + 1/(x^(1/2)), with respect to x, in its simplest form.


Use the substitution u = 2^x to find the exact value of ⌠(2^x)/(2^x +1)^2 dx between 1 and 0.


Using the product rule, differentiate: y = (x^2 - 1)(x^3 + 3).


How do I find the minimum or maximum of a quadratic function?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences