Integrate e^(2x)

To integrate e^(2x), integration by substitution can be used.

2x=u, you're left with an intergrand of e^u. 

S: = integral sign

S: e^u dx. In this case we are still integrating the intergrand in terms of x so we much switch it so that we are integrating in terms of u, we do this by differentiating u=2x. this equals du/dx=2. Through simple re-arrangement we get dx= 0.5du. Now we cna sub this into our new integral.

0.5S: e^u du. e to any power, when integrated is just e to that same power so we get 0.5e^u. 

Now all that's left is to sub back in the value of u which then turns our answer to 0.5e^(2x)

EJ
Answered by Emil John M. Maths tutor

35853 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of the constants a and b for which ax + b is a particular integral of the differential equation 2y' + 5y = 10x. Hence find the general solution of 2y' + 5y = 10x .


Find the gradient of the curve y=sin(x^2) + e^(x) at the point x= sqrt(pi)


Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


Given that: y = 5x^3 + 7x + 3. What is dy/dx? What is d^2y/dx^2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning