Find the indefinite integral of Ln(x)

This question requires integration by parts, using the formula:

Integral(u dv) =  u v - integral(v du) 

This is applied to find the integral of Ln(x) by writing Ln(x) as 1 * Ln(x), u is then Ln(x) and dv is 1.

Differentiating u=Ln(x) gives you du=1/x. Integrating dv=1 gives you v=x.

Then substituting into formula gives you: Integral(Ln(x)) = xLn(x) - Integral(x*1/x) = xLn(x) - Integral(1)

Therefore Intergral(Ln(x)) = xLn(x) - x + C, Where C is the integration constant

TD
Answered by Tutor66529 D. Maths tutor

20234 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If f(x)=7xe^x, find f'(x)


How do I find the reultant force acting on an object sitting on a slope?


Use Simpson’s Rule with five ordinates to find an approximate value for the integral e^(x^2)dx between the values of 0 and 1


Solve the differential equation dx/dt = -2(x-6)^(1/2) for t in terms of x given that x = 70 when t = 0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences