Find the indefinite integral of Ln(x)

This question requires integration by parts, using the formula:

Integral(u dv) =  u v - integral(v du) 

This is applied to find the integral of Ln(x) by writing Ln(x) as 1 * Ln(x), u is then Ln(x) and dv is 1.

Differentiating u=Ln(x) gives you du=1/x. Integrating dv=1 gives you v=x.

Then substituting into formula gives you: Integral(Ln(x)) = xLn(x) - Integral(x*1/x) = xLn(x) - Integral(1)

Therefore Intergral(Ln(x)) = xLn(x) - x + C, Where C is the integration constant

TD
Answered by Tutor66529 D. Maths tutor

20548 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of the function f(x) = x^3 - 27x and determine whether they are maxima or minima


Differentiate The Following function


Why does inverse sin,cos or tan of numbers have multiple answers


b) The tangent to C at P meets the coordinate axes at the points Q and R. Show that the area of the triangle OQR, where O is the origin, is 9/(3-e)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences