Find the indefinite integral of Ln(x)

This question requires integration by parts, using the formula:

Integral(u dv) =  u v - integral(v du) 

This is applied to find the integral of Ln(x) by writing Ln(x) as 1 * Ln(x), u is then Ln(x) and dv is 1.

Differentiating u=Ln(x) gives you du=1/x. Integrating dv=1 gives you v=x.

Then substituting into formula gives you: Integral(Ln(x)) = xLn(x) - Integral(x*1/x) = xLn(x) - Integral(1)

Therefore Intergral(Ln(x)) = xLn(x) - x + C, Where C is the integration constant

TD
Answered by Tutor66529 D. Maths tutor

21218 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(FP3 question). Integrate 1/sqrt(3-4x-x^2).


The curve C has the equation: y=3x^2*(x+2)^6 Find dy/dx


dx/dt=-5x/2 t>=0 when x=60 t=0


What's the difference between the quotient rule and the product rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning