Find the indefinite integral of Ln(x)

This question requires integration by parts, using the formula:

Integral(u dv) =  u v - integral(v du) 

This is applied to find the integral of Ln(x) by writing Ln(x) as 1 * Ln(x), u is then Ln(x) and dv is 1.

Differentiating u=Ln(x) gives you du=1/x. Integrating dv=1 gives you v=x.

Then substituting into formula gives you: Integral(Ln(x)) = xLn(x) - Integral(x*1/x) = xLn(x) - Integral(1)

Therefore Intergral(Ln(x)) = xLn(x) - x + C, Where C is the integration constant

TD
Answered by Tutor66529 D. Maths tutor

21867 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how to turn a fraction in the form of (x + a)/(x + b)^2 into partial fractions?


Differentiate x^5 + 3x^2 - 17 with respect to x


Find the area bounded by the curve x^2-2x+3 between the limits x=0 and x=1 and the horizontal axis.


Find the differential of the equation: x^2(2x+5)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning