Find the gradient of the curve y=sin(x^2) + e^(x) at the point x= sqrt(pi)

y=sin(x2) + ex Firstly we need to differentiate. dy/dx = 2xcos(x2) + ex using the chain rule Notice the gradient at x = sqrt(pi) is found when we sub x into dy/dx Hence dy/dx = 2*sqrt(pi)cos( sqrt(pi)2) + esqrt(pi) = esqrt(pi) - 2sqrt(pi)

JR
Answered by Jordan R. Maths tutor

6573 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2


The numbers a, b, c and d satisfy the following equations: a + b + 3c + 4d = k; 5a = 3b = 2c = d. What is the smallest value for k for which a, b, c and d are all positive integers


how to find flight time/distance and greatest hight of projectiles?


What is the Product Rule?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences