Find the gradient of the curve y=sin(x^2) + e^(x) at the point x= sqrt(pi)

y=sin(x2) + ex Firstly we need to differentiate. dy/dx = 2xcos(x2) + ex using the chain rule Notice the gradient at x = sqrt(pi) is found when we sub x into dy/dx Hence dy/dx = 2*sqrt(pi)cos( sqrt(pi)2) + esqrt(pi) = esqrt(pi) - 2sqrt(pi)

JR
Answered by Jordan R. Maths tutor

6635 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate 2^x?


integration by parts: x^-2lnx


How many lines of method should I write in order to get all of the marks?


How do you find the equation of a line at a given point that is tangent to a circle?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences