Find the gradient of the curve y=sin(x^2) + e^(x) at the point x= sqrt(pi)

y=sin(x2) + ex Firstly we need to differentiate. dy/dx = 2xcos(x2) + ex using the chain rule Notice the gradient at x = sqrt(pi) is found when we sub x into dy/dx Hence dy/dx = 2*sqrt(pi)cos( sqrt(pi)2) + esqrt(pi) = esqrt(pi) - 2sqrt(pi)

JR
Answered by Jordan R. Maths tutor

6787 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify the following algebraic fraction; (3x^2 - x - 2) / ((1/2)x + (1/3)).


A particle, P, moves along the x-axis. At time t seconds, t > 0, the displacement, is given by x=1/2t^2(t ^2−2t+1).


what is the integral of ln(x)


How do you find the angle between two lines in three dimensional vector space given two points on line 1 and the vector equation of line 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning