Find the gradient of the curve y=sin(x^2) + e^(x) at the point x= sqrt(pi)

y=sin(x2) + ex Firstly we need to differentiate. dy/dx = 2xcos(x2) + ex using the chain rule Notice the gradient at x = sqrt(pi) is found when we sub x into dy/dx Hence dy/dx = 2*sqrt(pi)cos( sqrt(pi)2) + esqrt(pi) = esqrt(pi) - 2sqrt(pi)

JR
Answered by Jordan R. Maths tutor

7012 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find ∫ (2x^5 - 1/(4x^3)-5) dx. giving each term in its simplest form.


How do I simply differentiate and what does a differential mean?


Find the values of y such that log2(11y-3)-log2(3)-2log2(​y) = 1


A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning