Find the gradient of the curve y=sin(x^2) + e^(x) at the point x= sqrt(pi)

y=sin(x2) + ex Firstly we need to differentiate. dy/dx = 2xcos(x2) + ex using the chain rule Notice the gradient at x = sqrt(pi) is found when we sub x into dy/dx Hence dy/dx = 2*sqrt(pi)cos( sqrt(pi)2) + esqrt(pi) = esqrt(pi) - 2sqrt(pi)

JR
Answered by Jordan R. Maths tutor

7112 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I find the approximate area enclosed by the expression e^x*sin(x)*x^3 on an infinite scale?


What is a logarithm?


f(x) = x^3 + 3x^2 + 5. Find (a) f ′′(x), (b) ∫f(x)dx.


How does one find the equation of a line passing through 2 points of a graph?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning