What is temporal and spatial summation in synaptic transmission?

Synaptic transmission, whether chemical or electrical, results in a change in membrane potential of the post-synaptic cell. If an excitatory synapse is activated, this results in a depolarization of the post-synaptic neuron. If the same synapse is activated again, before the membrane potential of the post-synaptic neuron has returned to the resting potential, the same synaptic transmission will produce an even greater depolarization. This effect is temporal summation (adding up the changes in membrane potential over time). The same post-synaptic neuron can receive inputs from multiple pre-synaptic neurons. The membrane potential of the post-synaptic neuron is a result of the combination of these interactions. For example, if two excitatory synapses are activated, the post-synaptic neuron membrane potential will be greatly depolarized. If one excitatory synapse and one inhibitory synapse is activated, the result will be no change in membrane potential, a slight depolarization or a slight hyperpolarization (depending on the relative strength of the synapses). This effect is special summation (adding up the changes in different parts of the neuron).

MM
Answered by Marie M. Biology tutor

10151 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

How can I understand enzyme-substrate function?


Some babies are born with a hole between the right and the left ventricles. These babies are unable to get enough oxygen to their tissues. Suggest why. (2)


Some poisons work by interfering with synaptic transmission at a neuromuscular junction. Describe the events at a synapse which lead to an action potential.


Why is the resting membrane potential of a neurone negative when there are positive ions inside the cell?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning