Find the solutions of the equation 3cos(2 theta) - 5cos(theta) + 2 = 0 in the interval 0 < theta < 2pi.

3cos^2(theta) - 3sin^2(theta) - 5cos(theta) + 2 = 0

3cos^2(theta) + 3cos^2(theta) - 3 - 5cos(theta) + 2 = 0

6cos^2(theta) - 5cos(theta) - 1 = 0

delta = 25 + 24 = 49

cos(theta) = (5 - 7)/12 = -1/6 or cos(theta) = 1

theta = 0 or arccos(-1/6) or 2pi - arccos(-1/6) or 2pi

PW
Answered by Piotr W. Maths tutor

5134 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given f(x) = (x^4 - 1) / (x^4 + 1), use the quotient rule to show that f'(x) = nx^3 / (x^4 + 1)^2 where n is an integer to be determined.


How do you solve 3sin2AtanA=2 for 0<A<180?


Given df/dx=2x+3 and the graph goes through (1,1), what is the function f?


Express asin(x) + bcos(x) in the form Rsin(x+c), where c is a non-zero constant.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning