Find the solutions of the equation 3cos(2 theta) - 5cos(theta) + 2 = 0 in the interval 0 < theta < 2pi.

3cos^2(theta) - 3sin^2(theta) - 5cos(theta) + 2 = 0

3cos^2(theta) + 3cos^2(theta) - 3 - 5cos(theta) + 2 = 0

6cos^2(theta) - 5cos(theta) - 1 = 0

delta = 25 + 24 = 49

cos(theta) = (5 - 7)/12 = -1/6 or cos(theta) = 1

theta = 0 or arccos(-1/6) or 2pi - arccos(-1/6) or 2pi

PW
Answered by Piotr W. Maths tutor

5402 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

AQA PC4 2015 Q5 // A) Find the gradient at P. B) Find the equation of the normal to the curve at P C)The normal P intersects at the curve again at the point Q(cos2q, sin q) Hence find the x-coordinate of Q.


Pushing a mass up a slope and energy


How do you differentiate y = 5 x^3 + 1/2 x^2 + 3x -4


Find the coordinates of the point of intersection of the lines 2x + 5y = 5 and x − 2y = 4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning