Solve these simultaneous equations. x^2+y^2=9, x-y+3=0

Rearrage so you have x+3=y, and x+y=9. Substitute the equation into another so you have x2+(x+3)2=9. Expand the brackets so that you have  x2+x2+6x+9=9. Then you rearrange so it's all on one side of the equation and equal to zero you will then have 2x2+6x=0 you can the divide by two so you have x2+3x=0. You then have to factorise so you have x(x+3)=0. This means you now know the value of x, it is either -3 or 0. You then substitute those values int either one of the two equations (usually the easier one) so you now have y=3 when x=0 and y=0 when x=-3. 

AB
Answered by Adam B. Maths tutor

5741 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you solve a simultaneous equation such as x+2y=10 and 3x+2y=18?


The ratio 2 centimetres to 6 metres can be written in the form 1 : n. Find the value of n.


The area of this rectangle is 56 cm2 length = 3k+2 and width = 7 - Find the value of k


There are 11 pens in a box, 8 are black, 3 are red. Two pens are taken out at random without replacement. What is the probability the pens are the same colour?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning