How would I differentiate y=2(e^x)sin(5x) ?

We can see that we have the product of two different functions, and so we need to use the product rule. We will separate the function and label each part u and v for clarity. So we let u = 2ex and let v = sin(5x), where y =uv we now recall the product rule: d(uv)/dx = ud(v)/dx + vd(u)/dx now we simply differentiate u and v separately and plug them into our formula, remembering how to differentiate exponentials and using the chain rule to differentiate sin(5x). du/dx = 2ex and dv/dx = 5cos(5x) so we now have dy/dx = (2ex)(5cos(5x)) + (sin(5x))(2ex) to simplify and make our answer look a bit nicer, we could take out a factor of 2ex to get 2ex(5cos(5x) + sin(5x))

SP
Answered by Scott P. Maths tutor

4599 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate sin(5x) and 3cos(x) and 3tan(5x)


Find the coordinates of the stationary point of y = x^2 + x - 2


Differentiate the function y = (x^2)/(3x-1) with respect to x.


When dealing with trigonometric functions such as sin, cos or tan, how do you solve the trigonometric equation when the argument of the function(s) is nx, where n is a real number not equal to 1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning