How do you differentiate x^x?

  • Google+ icon
  • LinkedIn icon
  • 4672 views

There are two ways we can find the derivative of x^x. It's important to notice that this function is neither a power function of the form x^k nor an exponential function of the form b^x, so we can't use the differentiation formulas for either of these cases directly.

(i) Let y=x^x, and take logarithms of both sides of this equation: ln(y)=ln(x^x). Using properties of logarithmic functions, we can rewrite this as ln(y)=x.ln(x). Then differentiating both sides with respect to x, and using the chain rule on the LHS and product rule on the RHS, gives 1/y.dy/dx=ln(x)+1. Rearranging, we have dy/dx=y.(ln(x)+1). That is, dy/dx=x^x(ln(x)+1).

(ii) Write x^x=e^(ln(x^x))=e^(x.ln(x)), using the properties of the exponential and logarithmic functions. Now, d/dx(x.ln(x))=ln(x)+1 by the product rule. Hence, d/dx(e^(x.ln(x)))=(ln(x)+1).(e^(x.ln(x)) by the chain rule, and using the fact that the derivative of e^[f(x)]=f'(x).e^[f(x)] for any differentiable function f(x). Finally, rewriting e^(x.ln(x)) as x^x gives d/dx(x^x)=x^x.(ln(x)+1), as with the first method.

Alina K. GCSE Maths tutor, GCSE Physics tutor, GCSE Chemistry tutor, ...

About the author

is an online GCSE Maths tutor with MyTutor studying at Imperial College London University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok