x is an integer such that ‎1≤x≤9, Prove that 0.(0x)recurring=x/99

r=0.0.x.

r=0.0x0x0x0x....

100r=x.0x0x0x     (1)

10,000r=x0x.0x0x0x      (2)

(2) - (1):  9,900r=x00

r=x00/9,990        r=x/99

EE
Answered by Ellie E. Maths tutor

12020 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that the square of an odd number is always 1 more than a multiple of 4


Solve: 3x+5y=19 4x-2y=-18


Expand and simplify (x-4)(2x+3y)^2


If f(x) = 3x +x^2, what is f(-2)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences