x is an integer such that ‎1≤x≤9, Prove that 0.(0x)recurring=x/99

r=0.0.x.

r=0.0x0x0x0x....

100r=x.0x0x0x     (1)

10,000r=x0x.0x0x0x      (2)

(2) - (1):  9,900r=x00

r=x00/9,990        r=x/99

EE
Answered by Ellie E. Maths tutor

12856 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve (2x^2 - 3x - 14)/(x^2 + 6x + 8) = -6/(x+3).


An amount of money was invested for 8 years. It earned compound interest at 2.5% per year. After 8 years the total value of the investment was £11,696.67. Work out the total interest earned.


A right angled triangle has sides of length 3 and length 4, what is the length of the hypotenuse?


Find the roots of the equation: x^2-2x-3=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning