Find the equation of the tangent to the curve y = 2x^2 + x - 1 at the point where x = 1.

To get the required tangent equation we need its gradient and the coordinates of a point it passes through. We can then substitute it into the formula y - y1 = m(x - x1). 1. Finding the gradient: To find the gradient of the tangent, first find the gradient of the curve where x=1: y = 2x2 + x - 1 --> dy/dx = 4x + 1 When x = 1, dy/dx= 4(1)+1 = 4+1 = 5 So the gradient of the required tangent is 5. 2. Finding a point the tangent passes through: We know that the tangent touches the curve when its x coordinate is 1, and we can also calculate the y coordinate of this point: y = 2(1)2 + (1) - 1 = (as y = 2x2 + x - 1). 3. Substiuting this into the line equation formula and rearranging: We can use the line equation formula: y - y1 = m(x - x1) and subsitute in the information we now have (m=5, x1=1 and y1=2). y - 2 = 5(x - 1) y - 2 = 5x - 5 --> y = 5x - 3 So y = 5x - 3 is the equation of the tangent to the curve y = 2x2 + x - 1 at the point where x = 1.

BT
Answered by Beth T. Maths tutor

11576 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve with equation y = f(x) passes through the point (4,25). Given that f'(x) = (3/8)*x^2 - 10x^(-1/2) + 1, find f(x).


Given that y = 4x^3 – 5/(x^2) , x not equal to 0, find in their simplest form (a) dy/dx, and (b) integral of y with respect to x.


Simplify: 4log2 (3) + 2log2(5)


How do I remember the trigonometry identities from C3 in the exam?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning