Prove the trigonometric identity tan^2(x)+1=sec^2(x)

 We can start with the identity sin2(x)+cos2(x)=1 If we divide through the equation by cos2(x), we get: sin2(x)/cos2(x) + cos2(x)/cos2(x) = 1/cos2(x) If we look at the left hand side of the equation: sin2(x)/cos2(x) is equal to tan2(x), and cos2(x)/cos2(x) is equal to 1 (as it is divided through by itself), the left hand side becomes tan2(x) +1 Now if we look at the right hand side of the equation: 1/cos2(x) is equal to sec2(x) Putting both sides of the equation together, we get tan2(x) +1=sec2(x)

CW
Answered by Charlotte W. Maths tutor

15549 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

FInd the equation of the line tangent to the graph g(x)=integral form 1 to x of cos(x*pi/3)/t at the point x=1


How to find the stationary point of y= x^2-108x^(1/2)+16 and determine the nature of the stationary point?


Express 5/[(x-1)(3x+2)] as partial fractions.


Integrate xcos(x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences