Solve the simultaneous equations. Equation one: 4x – 3y = 7. Equation two: 4x + y = -1.

To solve this question you need to find a value of x and y which satisfies both of the equations. Simultaneous equations can be solved by three methods: substitution, elimination, and graphically. We will use this example to understand the elimination method. The elimination method is where you manipulate the equations, so that when they are combined one of the unknowns 'drops out', or is eliminated. This leaves us with one unknown which we can solve the equation for and find its solution. We can then substitue this first unknown into one of the original two equations to find the second unkown.

The most important thing to remember when solving simultaneous equatiuons is that whatever you do to one side of the equation you must do to the other. In this example, one way we can eliminatie an unknown (4x) is by taking equation two away from equation one and then solving, as explained above. LHS: 4x - 3y - (4x + y) = -4y. RHS: 7- (-1) = 8. Full eqn: -4y = 8. 4y = -8. y = -2. Substitue this into eqn two to find x. 4x -2 = -1. 4x = 1. x = 1/4. Answer: x = 1/4, y = -2. Substitute these unknowns into eqn one to check your working. 

EF
Answered by Emma F. Maths tutor

8896 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A ladder 5.5m long is leaning against a wall. the foot of the ladder is 1.7m away from the wall. how far up the wall does the ladder reach?


3 postitive whole numbers have a mean of 6. What is the greatest possible range of the numbers?


There are 10 boys and 20 girls in a class. The class has a test. The mean mark for all the class is 60 The mean mark for the girls is 54 Work out the mean mark for the boys.


Find f^-1(x) for the following equation: f(x) = (12+x)/3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning